Article ID Journal Published Year Pages File Type
761828 Applied Acoustics 2009 7 Pages PDF
Abstract

A new band gap structure composed of a square array of parallel steel tubes with narrow slits is presented. The propagation of acoustic waves in a two-dimensional composite medium constituted of slit tubes in air is investigated both theoretically and experimentally. The band gap is calculated with the finite element method in which the acoustic-solid coupling is taken into account. The transmissions of the band system with both different single-width narrow slits and multi-width narrow slits are analyzed. Experimental measurements show that the transmission through an array of slit tubes with periodic narrow slits drops to noise level throughout frequency interval in good agreement with the calculated forbidden band. The large band gap and low starting frequency is obtained by arranging different width of slits embedded in the tubes. The experiments and theoretical results show that this new band gap structure has an especial character based on the resonant cavity playing an important role on the band gap besides the traditional Bragg interference.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , ,