Article ID Journal Published Year Pages File Type
7626923 Journal of Pharmaceutical and Biomedical Analysis 2018 9 Pages PDF
Abstract
Trimethylamine-N-oxide (TMAO) is derived from the gut microbiome and tissues metabolism of dietary choline and betaine. These molecules are closely related to the development of cardiovascular and cerebrovascular diseases. A rapid, sensitive and accurate method has been developed and validated for the simultaneous determination of trimethylamine N-oxide (TMAO), choline and betaine in human plasma using d9-trimethylamine N-oxide (TMAO), d9-choline, d9-betaine as the internal standard (IS). After methanol precipitation with 10 μL plasma samples, the analytes were extracted and then separated on Amide column (2.1 × 100 mm, 1.7 μm, waters) with an isocratic elution program consisting of acetonitrile-water (containing 10 mM ammonium formate pH = 3.0) at a flow of 400 μL/min. The detection was achieved under the selected reaction monitoring (SRM) scan using positive electrospray ionization (ESI+) in 3 min. The mass transitions monitored were as follows: m/z 76.3 → 58.4 for TMAO, m/z 104.2 → 60.3 for choline, m/z 118.1 → 58.3 for betaine, m/z 85.1 → 66.3 for d9-TMAO, m/z 113.2 → 69.3 for d9-choline, and m/z 127.1 → 67.2 for d9-betaine, respectively. The method has been fully validated for specificity, lower limit of quantification, linearity, stability, intra- and inter-day accuracy and precision. This assay combines simple sample processing with a short run time and small plasma volumes, making it well suited for high-throughput routine clinical or research purposes. The newly developed method was successfully applied to the patients (n = 220) suffered from acute stroke, and the concentration of choline was firstly found to be closely related with the prognosis of these patients.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , , , , ,