Article ID Journal Published Year Pages File Type
762761 Computers & Fluids 2011 6 Pages PDF
Abstract

One-dimensional (1D) numerical models have long been used in simulating fluvial hydrodynamics. While most of these models are based on the solutions to some approximate forms of the fully 1D St. Venant equations, it is desirable to have a 1D code that can deal with those highly dynamic and complex flows under certain flood conditions, with full consideration of the convective and source terms. This paper therefore presents a Godunov-type alternative for solving the 1D inhomogeneous shallow water equations with complex source terms. The model is also implemented with a wetting and drying condition to avoid producing negative water depth. The proposed model is validated by a selection of steady and transient hydraulic problems with reference solutions.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , ,