Article ID Journal Published Year Pages File Type
762794 Computers & Fluids 2011 8 Pages PDF
Abstract

An adaptation of a parametric ant colony optimization (ACO) to multi-objective optimization (MOO) is presented in this paper. In this algorithm (here onwards called MACO) the concept of MOO is achieved using the reference point (or goal vector) optimization strategy by applying scalarization. This method translates the multi-objective optimization problem to a single objective optimization problem. The ranking is done using ϵ-dominance with modified Lp metric strategy. The minimization of the maximum distance from the goal vector drives the solution close to the goal vector. A few validation test cases with multi-objectives have been demonstrated. MACO was found to out perform R-NSGA-II for the test cases considered. This algorithm was then integrated with a meshless computational fluid dynamics (CFD) solver to perform aerodynamic shape optimization of an airfoil. The algorithm was successful in reaching the optimum solutions near to the goal vector on one hand. On the other hand the algorithm converged to an optimum outside the boundary specified by the user for the control variables. These make MACO a good contender for multi-objective shape optimization problems.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , ,