Article ID Journal Published Year Pages File Type
7638390 Journal of Trace Elements in Medicine and Biology 2018 27 Pages PDF
Abstract
Determining aluminium ions at μg L−1 scale currently requires either costly analytical techniques such as inductively coupled plasma, and/or graphite furnace atomic absorption spectrometry. Dispersive liquid-liquid microextraction (DLLME) is designed to promote separation and preconcentration, thus making it possible to determine the analyte of interest without significant matrix influence. This study was aimed at the development of a spectrophotometric method to determine Al3+ after microextraction of its complex with quercetin. Butan-1-ol was used as a novel extractant solvent in the DLLME process. The parameters influencing complexation and microextraction, such as the amount of quercetin and volume of extractant were evaluated by univariate analysis. In optimised conditions were estimated for the proposed method: linear range from 7.5 to 165.0 μg L−1, LOD of 2.0 μg L−1, and LOQ of 7.0 μg L−1. The accuracy was checked by applying the proposed method to water (NIST SRM-1643e) and rice flour (NIST SRM-1568c) certified reference materials and spike-and-recovery trials with distinct samples (mineral water, green tea, thermal spring water, contact lens disinfecting solution, saline concentrate for hemodialysis and urine).
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,