Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7638876 | Journal of Trace Elements in Medicine and Biology | 2018 | 7 Pages |
Abstract
In the present study, we focused on the effects of selected arsenolipids and three representative metabolites on the blood-cerebrospinal fluid barrier (B-CSF-B), a brain-regulating interface. For this purpose, we incubated an in vitro model of the B-CSF-B composed of porcine choroid plexus epithelial cells (PCPECs) with three AsHCs, two arsenic-containing fatty acids (AsFAs) and three representative arsenolipid metabolites (dimethylarsinic acid, thio/oxo-dimethylpropanoic acid) to examine their cytotoxic potential and impact on barrier integrity. The toxic arsenic species arsenite was also tested in this way and served as a reference substance. While AsFAs and the metabolites showed no cytotoxic effects in the conducted assays, AsHCs showed a strong cytotoxicity, being up to 1.5-fold more cytotoxic than arsenite. Analysis of the in vitro B-CSF-B integrity showed a concentration-dependent disruption of the barrier within 72â¯h. The correlation with the decreased plasma membrane surface area (measured as capacitance) indicates cytotoxic effects. These findings suggest exposure to elevated levels of certain arsenolipids may have detrimental consequences for the central nervous system.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
S.M. Müller, F. Ebert, J. Bornhorst, H.-J. Galla, K.A. Francesconi, T. Schwerdtle,