Article ID Journal Published Year Pages File Type
765510 Case Studies in Thermal Engineering 2014 13 Pages PDF
Abstract

In this paper, laminar forced convection flow of Al2O3–water nanofluid in sinusoidal-wavy channel is numerically studied. The two-dimensional governing equations of continuity, momentum and energy equations in body-fitted coordinates are solved using finite volume method. The sinusoidal-wavy channel with four different phase shifts of 0°, 45°, 90° and 180° are considered in this study. The results of numerical solution are obtained for Reynolds number and nanoparticle volume fractions ranges of 100–800 and 0–5%, respectively. The effect of phase shift, nanoparticle volume fraction and Reynolds number on the streamline and temperature contours, local Nusselt number, local skin friction coefficient, average Nusselt number, non-dimensional pressure drop and thermalhydraulic performance factor have been presented and analyzed. Results indicate that the optimal performance is achieved by 0° phase shift channel over the ranges of Reynolds number and nanoparticles volume fractions.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , ,