Article ID Journal Published Year Pages File Type
765514 Case Studies in Thermal Engineering 2014 9 Pages PDF
Abstract

An analysis has been performed to study the problem of magneto-hydrodynamic (MHD) Jeffery–Hamel flow with nanoparticles. The governing equations for this problem are reduced to an ordinary form and is solved using collocation method (CM) and numerically by fourth order Runge–Kutta technique. Also, Velocity fields have been computed and shown graphically for various values of physical parameters. The objective of the present work is to investigate the effect of the semi angles between the plates, Reynolds number, magnetic field strength and nanoparticles volume fraction on the velocity field. As an important outcome, Increasing Reynolds numbers leads to reduce velocity and excluded backflow in convergent channel.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , , , ,