Article ID Journal Published Year Pages File Type
766256 Energy Conversion and Management 2009 5 Pages PDF
Abstract

In this study, waste cooking oil has subjected to transesterification reaction by potassium hydroxide (KOH) catalytic and supercritical methanol methods obtaining for biodiesel. In catalyzed methods, the presence of water has negative effects on the yields of methyl esters. In the catalytic transesterification free fatty acids and water always produce negative effects since the presence of free fatty acids and water causes soap formation, consumes catalyst, and reduces catalyst effectiveness. Free fatty acids in the waste cooking oil are transesterified simultaneously in supercritical methanol method. Since waste cooking oil contains water and free fatty acids, supercritical transesterification offers great advantage to eliminate the pre-treatment and operating costs. The effects of methanol/waste cooking oils ratio, potassium hydroxide concentration and temperature on the biodiesel conversion were investigated.

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
,