Article ID Journal Published Year Pages File Type
766531 Communications in Nonlinear Science and Numerical Simulation 2016 7 Pages PDF
Abstract

•The peregrine rogue wave dynamics, with a solitons on finite background (SFB) ansatz, in the recently proposed (Phys. Rev. Lett. 110 (2013) 064105) continuous nonlinear Schrödinger system with parity-time symmetric Kerr nonlinearity is studied for the first time, to the best of our knowledge.•It is found that the continuous nonlinear Schrödinger system with PT-symmetric nonlinearity admits Peregrine soliton solution.•Upon numerical computation, the appearance of low-intense Kuznetsov–Ma (KM) soliton trains in the absence of transverse shift (unbroken PT-symmetry) and well-localized high-intense Peregrine rogue waves in the presence of transverse shift (broken PT-symmetry) is observed in a definite parametric regime.

In this work, we have studied the peregrine rogue wave dynamics, with a solitons on finite background (SFB) ansatz, in the recently proposed (Ablowitz and Musslimani, (2013) [31]) continuous nonlinear Schrödinger system with parity-time symmetric Kerr nonlinearity. We have found that the continuous nonlinear Schrödinger system with PT-symmetric nonlinearity also admits Peregrine soliton solution. Motivated by the fact that Peregrine solitons are regarded as prototypical solutions of rogue waves, we have studied Peregrine rogue wave dynamics in the c-PTNLSE model. Upon numerical computation, we observe the appearance of low-intense Kuznetsov–Ma (KM) soliton trains in the absence of transverse shift (unbroken PT-symmetry) and well-localized high-intense Peregrine rogue waves in the presence of transverse shift (broken PT-symmetry) in a definite parametric regime.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,