Article ID Journal Published Year Pages File Type
767028 Communications in Nonlinear Science and Numerical Simulation 2012 6 Pages PDF
Abstract

In this note we analyze a model for a unidirectional unsteady flow of a viscous incompressible fluid with time dependent viscosity. A possible way to take into account such behaviour is to introduce a memory formalism, including thus the time dependent viscosity by using an integro-differential term and therefore generalizing the classical equation of a Newtonian viscous fluid. A possible useful choice, in this framework, is to use a rheology based on stress/strain relation generalized by fractional calculus modelling. This is a model that can be used in applied problems, taking into account a power law time variability of the viscosity coefficient. We find analytic solutions of initial value problems in an unbounded and bounded domain. Furthermore, we discuss the explicit solution in a meaningful particular case.

► Model of a viscous fluid with time dependent viscosity. ► Inclusion of the time dependent viscosity by using an integro-differential term. ► The integro-differential term is written by means of fractional calculus. ► Exact solution of the related fractional PDE.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,