Article ID Journal Published Year Pages File Type
767253 Communications in Nonlinear Science and Numerical Simulation 2011 9 Pages PDF
Abstract

In this paper, a class of impulsive Cohen–Grossberg neural networks with time-varying delays and reaction–diffusion is formulated and investigated. By employing delay differential inequality and the linear matrix inequality (LMI) optimization approach, some sufficient conditions ensuring global exponential stability of equilibrium point for impulsive Cohen–Grossberg neural networks with time-varying delays and diffusion are obtained. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters, diffusion effect and impulsive disturbed intention. It is believed that these results are significant and useful for the design and applications of Cohen–Grossberg neural networks. An example is given to show the effectiveness of the results obtained here.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,