Article ID Journal Published Year Pages File Type
7674225 Spectrochimica Acta Part B: Atomic Spectroscopy 2015 10 Pages PDF
Abstract
Online measurement of carbon content of coal is important for coal-fired power plants to realize the combustion optimization of coal-fired boilers. Given that the measurement of carbon content of coal using laser-induced breakdown spectroscopy (LIBS) suffers from low measurement accuracy because of matrix effects, our previous study has proposed a combination model to improve the measurement accuracy of carbon content of coal. The spatial confinement method, which utilizes the spectral emissions of laser-induced plasmas spatially confined by cavities for quantitative analysis, has potential to improve quantitative analysis performance. In the present study, the combination model was used for coal measurement with cylindrical cavity confinement to further improve the measurement accuracy of carbon content of coal. Results showed that measurement accuracy was improved when the combination model was used with spatial confinement method. The coefficient of determination, root-mean-square error of prediction, average relative error, and average absolute error for the combination model with cylindrical cavity confinement were 0.99, 1.35%, 1.66%, and 1.08%, respectively, whereas values for the combination model without cylindrical cavity confinement were 0.99, 1.63%, 1.82%, and 1.27%, respectively. This is the first time that the average absolute error of carbon measurement for coal analysis has achieved close to 1.0% using LIBS, which is the critical requirement set for traditional chemical processing method by Chinese national standard. These results indicated that LIBS had significant application potential for coal analysis.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , ,