Article ID Journal Published Year Pages File Type
7674717 Spectrochimica Acta Part B: Atomic Spectroscopy 2014 52 Pages PDF
Abstract
Herein the fundamental theories and calculation methods of LIP temperature via spectroscopic approaches are briefly reviewed. Its temporal and spatial evolutions together with several influencing factors are discussed, such as laser parameters, ambient surrounding, and physical & chemical properties of the sample. The results summarized exhibit the general trend that LIP temperature increases with increasing laser wavelength, pulse width, laser energy, background gas pressure, and sample hardness. On the other hand, it decreases with time elapsing and distance from sample surface. Moreover, plasma temperature generated in argon surrounding is higher than that in other gas species, and the rank of temperature values generated from different samples exhibits a general tendency of Cu > Fe > Ni ≈ Al ≈ glass ≈ rock. Additionally, LIP temperature tends to increase as lens focal point approaches sample surface, and the plasma confinement effect in sample cavity is significant in altering plasma temperature. Various explanations are given to interpret these temperature behaviors.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , ,