Article ID Journal Published Year Pages File Type
767684 Engineering Fracture Mechanics 2011 18 Pages PDF
Abstract

Oscillations observed in the load–displacement response of brittle interfaces modeled by cohesive zone elements in a quasi-static finite element framework are artifacts of the discretization. The typical limit points in this oscillatory path can be traced by application of path-following techniques, or avoided altogether by adequately refining the mesh until the standard iterative Newton–Raphson method becomes applicable. Both strategies however lead to an unacceptably high computational cost and a low efficiency, justifying the development of a process driven hierarchical extension of the discretization used in the process zone of a cohesive crack. A self-adaptive enrichment scheme within individual cohesive zone elements driven by the physics governing the problem, is an efficient solution that does not require further mesh refinements. A two-dimensional mixed-mode example in a general framework with an irreversible cohesive zone law shows that an enriched formulation restores the smoothness of the solution in structures that are discretized in a relatively coarse manner.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,