Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
767846 | Engineering Fracture Mechanics | 2011 | 7 Pages |
Short fatigue crack propagation often determines the service life of cyclically loaded components and is highly influenced by microstructural features such as grain boundaries. A two-dimensional model to simulate the growth of these stage I-cracks is presented. Cracks are discretised by displacement discontinuity boundary elements and the direct boundary element method is used to mesh the grain boundaries. A superposition procedure couples these different boundary element methods to employ them in one model. Varying elastic properties of the grains are considered and their influence on short crack propagation is studied. A change in crack tip slide displacement determining short crack propagation is observed as well as an influence on the crack path.