Article ID Journal Published Year Pages File Type
767854 Engineering Fracture Mechanics 2011 14 Pages PDF
Abstract

The autofrettage of intersecting holes leads to extremely high compressive residual stress fields. These stresses in combination with the plastic deformations decelerate fatigue cracks initiated at the hole intersection notch. Simulations of plasticity induced crack closure of such cracks are presented based on the strip yield and a finite element model. The strip yield model has been extended to allow for an input of residual stresses coming from elsewhere, e.g. from a finite element calculation or measurements. The calculations are applied for constant as well as variable amplitude loading. The numerical expense of the finite element based modelling for variable amplitude loading is still too high if millions of cycles have to be considered. Therefore, a new approximation method is proposed introducing compensatory load sequences. Simulation results are compared to experimentally determined results showing good agreement. However, the accuracy of crack initiation life estimates has turned out to provide a high potential for further improvement.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,