Article ID Journal Published Year Pages File Type
767865 Engineering Fracture Mechanics 2010 21 Pages PDF
Abstract

This paper proposes a definition of generalized stress intensity factors that includes classical definitions for crack problems as special cases. Based on the semi-analytical solution obtained from the scaled boundary finite-element method, the singular stress field is expressed as a matrix power function with its dimension equal to the number of singular terms. Not only real and complex power singularities but also power-logarithmic singularities are represented in a unified expression without explicitly determining the type of singularity. The generalized stress intensity factors are evaluated directly from the scaled boundary finite-element solution for the singular stress field by following standard stress recovery procedures in the finite element method. The definition and evaluation procedure are valid to multi-material wedges composed of any number of isotropic and anisotropic materials. Numerical examples, including a cracked homogeneous plate, a bimaterial plate with an interfacial crack, a V-notched bimaterial plate and a crack terminating at a material interface, are analyzed. Features of this unified definition are discussed.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,