Article ID Journal Published Year Pages File Type
768116 Engineering Fracture Mechanics 2007 14 Pages PDF
Abstract

A new mixed-mode threshold stress intensity factor is developed using a critical plane-based multiaxial fatigue theory and the Kitagawa diagram. The proposed method is a nominal approach since the fatigue damage is evaluated using remote stresses acting on a cracked component rather than stresses near the crack tip. An equivalent stress intensity factor defined on the critical plane is proposed to predict the fatigue crack growth rate under mixed-mode loading. A major advantage is the applicability of the proposed model to many different materials, which experience either shear or tensile dominated crack growth. The proposed model is also capable to nonproportional fatigue loading since the critical plane explicitly considers the influence of the load path. The predictions of the proposed fatigue crack growth model under constant amplitude loading are compared with a wide range of fatigue results in the literature. Excellent agreements between experimental data and model predictions are observed.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,