Article ID Journal Published Year Pages File Type
7682096 Talanta 2013 28 Pages PDF
Abstract
A novel Eu3+-sensitive fluorescent chemosensor is introduced. It is based on magnetic core-shell silica nanoparticle which is functionalized by Cinchonidine (CD-Fe3O4@SiO2). The nano-chemosensor was synthesized and characterized by Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-visible absorption and fluorescence emission. The fluorescent nano-chemosensor shows a selective interaction with Eu3+ ion. Fluorescence studies revealed that the emission intensity of the functionalized magnetic core-shell silica nanoparticles (CD-Fe3O4@SiO2 NPs) increases significantly by addition of various concentrations of Eu3+ ion. While in case of mono, di, and other trivalent cations, weak changes or either no changes in intensity were observed. The enhancement in fluorescence intensity of nano-chemosensor is because of the strong covalent binding of Eu3+ ion to CD-Fe3O4@SiO2 NPs with a large binding constant value of 1.7×105 mol L−1.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , , ,