Article ID Journal Published Year Pages File Type
768467 Engineering Fracture Mechanics 2005 24 Pages PDF
Abstract

Cracks in stepped and continuously graded material specimens under flexural loading were investigated via finite element analysis. Calculation of mechanical energy release rates and propagation angles with crack-opening displacement correlation and the local symmetry (KII = 0) criterion, respectively, provided results most efficiently and accurately, as compared with compliance and J-integral approaches and other deflection criteria. A routine was developed for automatic crack extension and remeshing, enabling simulation of incremental crack propagation. Effects of gradient profile and crack geometry on crack-tip stresses and crack propagation path are examined, and implications of these for optimal design of graded components against failure by fast fracture are discussed.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,