Article ID Journal Published Year Pages File Type
768587 Computers & Fluids 2013 8 Pages PDF
Abstract

This study presents a strategy for simulations of cryogenic single-species jets under supercritical pressure conditions. In this strategy, a pressure evolution equation is introduced and numerical diffusion terms are consistently constructed in order to maintain the pressure and velocity equilibriums at fluid interfaces. By taking the idea of the equilibrium, the interfaces with high density and temperature ratio are robustly captured without the generation of spurious oscillations, while a high-order central differencing scheme resolves the flow fields. The present method preserves the mass and momentum conservation properties, while the poor energy conservation property is recognized. The one-dimensional interface advection and two-dimensional cryogenic jet mixing problems demonstrate the superiority and robustness of the present method over a conventional fully conservative approach.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,