Article ID Journal Published Year Pages File Type
768799 Computers & Fluids 2011 10 Pages PDF
Abstract

In transitional and turbulent high speed boundary-layer flows the wall thermal boundary conditions play an important role and in many cases an assumption of a constant temperature or a specified heat flux may not be appropriate for numerical simulations. In this paper we extend a formulation for direct numerical simulation of compressible flows to include a thin plate that is thermally fully coupled to the flow. Even without such thermal coupling compressible flows with shock waves and turbulence represent a challenge for numerical methods. In this paper we review the scaling properties of algorithms, based on explicit high-order finite differencing combined with shock capturing, that are suitable for dealing with such flows. An application is then considered in which an isolated roughness element is of sufficient height to trigger transition in the presence of acoustic forcing. With the thermal wall model included it is observed that the plate heats up sufficiently during the simulation for the transition process to be halted and the flow consequently re-laminarises.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , ,