Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7691379 | Vibrational Spectroscopy | 2014 | 9 Pages |
Abstract
Attenuated total reflection-Fourier transform infrared (ATR-FTIR) imaging has been applied for the first time to monitor the redistribution and release of hGH from a range of PLGA/PLA microparticles during a set of dissolution experiments at 37 °C in D2O. The effect of gamma-irradiation, a common sterilisation method, on hGH release kinetics from such systems has been demonstrated. Increasing the gamma dose was shown to have a profound influence on the nature of the release mechanism, with higher gamma doses leading to a dramatic increase in the initial burst release followed by a retardation in the sustained release and a lower total level of hGH release over the dissolution experiment. These changes were shown to be the result of a combination of factors; firstly, via scanning electron microscopy (SEM), gamma-irradiation was shown to strongly influence the morphology of the PLGA/PLA microparticles; reducing their overall porosity and reducing the available surface area, whilst forcing some of the entrapped hGH to the microparticle surface. Secondly, from FTIR measurements, gamma-irradiation was shown to increase the number of oxygenated components in the Poloxamer 407 excipient, by a process of chain scission, thereby increasing the strength of interaction between the microparticle and the entrapped hGH.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Hakan Keles, Andrew Naylor, Francis Clegg, Chris Sammon,