Article ID Journal Published Year Pages File Type
769147 Computers & Fluids 2010 20 Pages PDF
Abstract

Shock/shear/turbulence interactions are simulated using Large-Eddy Simulation (LES) with a new localized subgrid closure approach. Both normal and oblique shocks interactions with turbulence are considered. The LES methodology adopted here combines a hybrid numerical scheme that switches automatically and locally between a shock-capturing scheme and a low-dissipation high-order central scheme.The fundamental role of the diffusion of turbulent kinetic energy by pressure fluctuations in the problem of normal shock/isotropic turbulence interaction is stressed in the DNS study, and accounted for in the closure model. The study of the interaction between two oblique shocks and a turbulent shear layer shows that the turbulence evolution is mostly affected by two competing phenomena. An amplification of the turbulent levels occurs downstream of the interaction, and the mixing layer growth rate is significantly increased. However, the integrated production of turbulent energy across the mixing layer is reduced, and the increase in mixing is found to be localized in space, the turbulent statistics quickly relaxing to their undisturbed levels. Furthermore, the increase in vorticity from the compression of the mixing layer remains small, unaffected by the presence of turbulent and coherent structures.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,