Article ID Journal Published Year Pages File Type
7693674 Current Opinion in Chemical Biology 2018 11 Pages PDF
Abstract
Microorganisms can acquire energy from the environment by extending their electron transport chains to external solid electron donors or acceptors. This process, known as extracellular electron transfer (EET), is now being heavily pursued for wiring microbes to electrodes in bioelectrochemical renewable energy technologies. Recent studies highlight the crucial role of multi-heme cytochromes in facilitating biotic-abiotic EET both for cellular electron export and uptake. Here we explore progress in understanding the range and function of these biological electron conduits in the context of fuel-to-electricity and electricity-to-bioproduct conversion. We also highlight emerging topics, including the role of multi-heme cytochromes in inter-species electron transfer and in inspiring the design and synthesis of a new generation of protein-based bioelectronic components.
Related Topics
Physical Sciences and Engineering Chemistry Chemistry (General)
Authors
, , ,