Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7694223 | Current Opinion in Chemical Biology | 2016 | 7 Pages |
Abstract
Voltage imaging has the potential to unravel the contributions that rapid changes in membrane voltage make to cellular physiology, especially in the context of neuroscience. In particular, small molecule fluorophores are especially attractive because they can, in theory, provide fast and sensitive measurements of membrane potential dynamics. A number of classes of small molecule voltage indicators will be discussed, including dyes with improved two-photon voltage sensing, near infrared optical profiles for use in in vivo applications, and newly developed electron-transfer based indicators, or VoltageFluors, that can be tuned across a range of wavelengths to enable all-optical voltage manipulation and measurement. Limitations and a 'wish-list' for voltage indicators will also be discussed.
Related Topics
Physical Sciences and Engineering
Chemistry
Chemistry (General)
Authors
Evan W Miller,