Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7694305 | Current Opinion in Chemical Biology | 2016 | 7 Pages |
Abstract
Nitrogenase catalyzes the important reactions of N2-reduction, CO-reduction and CO2-reduction at its active cofactor site. Designated the M-cluster, this complex metallocofactor is assembled through the generation of a characteristic 8Fe-core before the insertion of Mo and homocitrate that completes the stoichiometry of the M-cluster. NifB catalyzes the crucial step of radical SAM-dependent carbide insertion that occurs concomitant with the insertion a '9th' sulfur and the rearrangement/coupling of two 4Fe-clusters into a complete 8Fe-core of the M-cluster. Further categorization of a family of NifB proteins as a new class of radical SAM methyltransferases suggests a general function of these proteins in complex metallocofactor assembly and provides a new platform for unveiling unprecedented chemical reactions catalyzed by biological systems.
Related Topics
Physical Sciences and Engineering
Chemistry
Chemistry (General)
Authors
Yilin Hu, Markus W Ribbe,