Article ID Journal Published Year Pages File Type
769444 Engineering Failure Analysis 2009 7 Pages PDF
Abstract

This paper deals with characterisation of microstructure and creep behaviour of similar weld-joints of advanced 9% Cr ferritic steels, namely E911 and P92. The microstructures of the investigated weld-joints exhibit significant variability in different weld-joint regions such as weld metal (WM), heat-affected zone (HAZ), and base metal (BM). The cross-weld creep tests were carried out at 625 °C with initial applied stresses of 100 and 120 MPa. Both weld-joints ruptured by the “type IV cracking failure mode” in their fine-grained heat-affected zones (FG-HAZ). The creep fracture location with the smallest precipitation density corresponds well with its smallest measured cross-weld hardness. The welds of P92 steel exhibit better creep resistance than those of E911 steel. Whereas the microstructure of P92 weld after creep still contains laths, the microstructure of E911 weld is clearly recrystallized. The creep stress exponents are 14.5 and 8 for E911 and P92 weld-joints, respectively. These n-values indicate the “power-law creep” with dislocation-controlled deformation mechanism for both investigated weld-joints.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , , ,