Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
769686 | Computers & Fluids | 2008 | 20 Pages |
In this work, we extend a finite-volume pressure-based incompressible algorithm to solve three-dimensional compressible and incompressible turbulent flow regimes. To achieve a hybrid algorithm capable of solving either compressible or incompressible flows, the mass flux components instead of the primitive velocity components are chosen as the primary dependent variables in a SIMPLE-based algorithm. This choice warrants to reduce the nonlinearities arose in treating the system of conservative equations. The use of a new Favre-averaging like technique plays a key role to render this benefit. The developed formulations indicate that there is less demand to interpolate the fluxes at the cell faces, which is definitely a merit. To impose the hyperbolic behavior in compressible flow regimes, we introduce an artificial hyperbolicity in pressure correction equation. We choose k–ω turbulence model and incorporate the compressibility effect as a correction. It is shown that the above considerations grant to achieve a robust algorithm with great capabilities in solving both flow regimes with a reasonable range of Mach number applications. To evaluate the ability of the new pressure-based algorithm, three test cases are targeted. They are incompressible backward-facing step problem, compressible flow over a wide range of open to closed cavities, and compressible turbulent flow in a square duct. The current results indicate that there are reliable agreements with those of experiments and other numerical solutions in the entire range of investigation.