Article ID Journal Published Year Pages File Type
769686 Computers & Fluids 2008 20 Pages PDF
Abstract

In this work, we extend a finite-volume pressure-based incompressible algorithm to solve three-dimensional compressible and incompressible turbulent flow regimes. To achieve a hybrid algorithm capable of solving either compressible or incompressible flows, the mass flux components instead of the primitive velocity components are chosen as the primary dependent variables in a SIMPLE-based algorithm. This choice warrants to reduce the nonlinearities arose in treating the system of conservative equations. The use of a new Favre-averaging like technique plays a key role to render this benefit. The developed formulations indicate that there is less demand to interpolate the fluxes at the cell faces, which is definitely a merit. To impose the hyperbolic behavior in compressible flow regimes, we introduce an artificial hyperbolicity in pressure correction equation. We choose k–ω turbulence model and incorporate the compressibility effect as a correction. It is shown that the above considerations grant to achieve a robust algorithm with great capabilities in solving both flow regimes with a reasonable range of Mach number applications. To evaluate the ability of the new pressure-based algorithm, three test cases are targeted. They are incompressible backward-facing step problem, compressible flow over a wide range of open to closed cavities, and compressible turbulent flow in a square duct. The current results indicate that there are reliable agreements with those of experiments and other numerical solutions in the entire range of investigation.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , ,