Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7702254 | Ultrasonics Sonochemistry | 2018 | 48 Pages |
Abstract
In this study, a new anodized aluminum oxide (AAO) nanostructure membrane was synthesized by anodization process under a constant voltage, in oxalic acid solution that was improved with trace amounts of sulfuric acid at room temperature. The effect of various parameters on the morphology of the synthesized nanostructures such as voltage, electrolyte composition, anodization time and type of stripping solution were investigated. According to the results, corrosion of the walls, size regularity, diameter and number of the pores increased in the presence of sulfuric acid (0.018â¯mol.Lâ1). Nitrogen adsorption-desorption analysis confirmed significant porosity, array and uniformity of the pore size in the synthesized nanoporous membrane. A new modification method was used based on ultrasonic-hydrothermal method to modify the synthesized AAO with Fe3O4/SiO2 nanoparticles for metals and metalloids removal from aqueous solution. In this method, Fe3O4/SiO2 nanoparticles were placed very regularly and uniformly on the surface and inside the pores. This modification was confirmed by characterization techniques. The modified AAO@Fe3O4/SiO2 membrane showed excellent results for removing arsenic from aqueous media.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Chemistry (General)
Authors
Akram Maghsodi, Laleh Adlnasab, Meisam Shabanian, Mehran Javanbakht,