Article ID Journal Published Year Pages File Type
7702931 Ultrasonics Sonochemistry 2018 7 Pages PDF
Abstract
Applying a nanocomposite to increase the conductivity of an electrode can facilitate electrochemical analysis. In this regard, multi-walled carbon nanotubes (MWCNTs) evenly dispersed in hydrophilic solution can play an important role in electrochemical bio-sensing due to their unique properties, such as their high electrical conductivity and ability to conjugate with hydrophilic enzymes. Herein, we report the simple ultrasonic synthesis of a highly dispersible, enzyme-binding nanocomposite, poly(acrylamide)-co-poly(vinyl imidazole) (7:1 mol ratio)-MWCNTs (PAA-PVI@MWCNTs). This material, having a zeta potential of 36.6 ± 0.53 mV, was applied as a film to an electrode surface and stably bound with glucose oxidase to transfer an electron between the enzyme and electrode in the presence of glucose. The PAA-PVI@MWCNTs composite, which was readily dispersed in deionized water, can be used as a biocompatible material for applications such as bio-sensing, point-of-care testing (POCT), and other health care functions.
Related Topics
Physical Sciences and Engineering Chemistry Chemistry (General)
Authors
, , ,