Article ID Journal Published Year Pages File Type
7703658 Ultrasonics Sonochemistry 2017 11 Pages PDF
Abstract
The rapid, robust, scalable and non-hazardous sonochemical approach for in situ reduction and direct functionalization of graphene oxide has been developed for non-toxic biomedical applications. The graphene oxide (GrO) was directly functionalized with tryptamine (TA) without using any hazardous acylating and coupling reagents. The reaction was completed within 20 min. An impact of ultrasound was inferred for a direct functionalization with other conventional methods. The evolved electronic states were confirmed with near edge X-ray absorption fine structure (NEXAFS). The direct covalent functionalization and formation of f-(TA) GrO was proven with FTIR, 13C solid state NMR, XPS, XRD, Raman‚ HRTEM, AFM and TGA. The total percentage weight loss in TGA confirms an enhanced thermal stability of f-(TA) GrO. The f-(TA) GrO was further explored for an investigation of in vitro antimicrobial activity to ensure the health and environmental safety. An outstanding antibacterial activity of f-(TA) GrO was found against gram positive Staphylococcus aureus at MIC 128 mg mL−1. It confirms a suitability of f-(TA) GrO for thermally stable antibacterial coating. The f-(TA) GrO showed 39.14-48.9% antioxidant activities, evaluated with 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical assay. The inherent cytotoxicity of f-(TA) GrO was evaluated with SRB assay to living cells, MCF-7 and Vero. The estimated cell viabilities were >80% upon addition of f-(TA) GrO over a wide concentration range of 10-80 μg mL−1. The high cytocompatibility of f-(TA) GrO confirms the low toxicity and an excellent biocompatibility. The morphological effect on Vero cell line, evidently confirmed the biocompatibility of f-(TA) GrO. Therefore, f-(TA) GrO was emerged as an advanced functional biomaterial for thermal and biomedical applications.
Related Topics
Physical Sciences and Engineering Chemistry Chemistry (General)
Authors
, , , ,