Article ID Journal Published Year Pages File Type
7703674 Ultrasonics Sonochemistry 2017 26 Pages PDF
Abstract
The present study evaluated inactivation efficiency of a sonophotocatalytic process using ZnO nanofluids including ultrasonic parameters such as power density, frequency and time. The result showed that inactivation efficiency was increased by 20% when ultrasonic irradiation was combined with photocatalytic process in the presence of natural light. Comparison of inactivation efficiency in photocatalytic, ultrasonic and sonocatalytic processes using Escherichia coli as a model bacteria identified that inactivation efficiencies are shown in the following order: ultrasonic irradiation < sonocatalysis < photocatalysis < sonophotocatalysis. Furthermore, inactivation mechanism of sonophotocatalysis was proposed. Studies of reactive oxygen species (ROS) and zinc ions (Zn2+) release evaluation revealed that ROS play a key role in bacterial inactivation rather than Zn2+. Permeability of outer membrane (OM) and inner membrane (IM) of E. coli bacterial cells were studied and exhibited that sonophotocatalysis increased the permeability of OM and IM significantly. The enhanced bacterial inactivation effect in sonophotocatalytic process contributed to acoustic cavitation, sonocatalysis of ZnO and sonoporation phenomenon.
Related Topics
Physical Sciences and Engineering Chemistry Chemistry (General)
Authors
, , , , , ,