Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7703733 | Ultrasonics Sonochemistry | 2017 | 39 Pages |
Abstract
To overcome the drawback of low stable brought by the transformation of Ag+ into Ag, a highly efficient and stable photocatalyst Ag3PO4/rectorite composite was successfully synthesized by ultrasound-assisted precipitation method. The as-prepared samples were characterized by field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, N2 adsorption-desorption, room-temperature photoluminescence spectra, Fourier transform infrared spectrum measurements and UV-vis diffuse reflectance spectra. The absorption edges of the Ag3PO4/rectorite display a noticeable shift to the visible light region as compared to that of the Ag3PO4. Compared with bare Ag3PO4, the Ag3PO4/rectorite composite by ultrasound-assisted precipitation process exhibits significantly enhanced photocatalytic activity and stable for methyl orange (MO) degradation under visible light irradiation. The improved activity of the Ag3PO4/rectorite photocatalyst could be attributed to the expanded visible light absorption, the enhanced interfacial charge transfer and the inhibited recombination of electron-hole pairs. Therefore, the facile ultrasound-assisted preparation process provides some insight into the application of Ag3PO4/rectorite nanocomposites in photocatalytic degradation of organic pollutants.
Related Topics
Physical Sciences and Engineering
Chemistry
Chemistry (General)
Authors
Yadan Guo, Wenchao Yu, Jinquan Chen, Xuegang Wang, Bai Gao, Guanghui Wang,