Article ID Journal Published Year Pages File Type
770710 Engineering Fracture Mechanics 2011 19 Pages PDF
Abstract

The present study is concerned with an enhanced fracture mechanics characterization of engineering materials using small scale cruciform bending specimens. Based on the regular SE(B) specimen geometry with a shallow crack, two additional loading legs allow the application of an additional stress component acting longitudinally to the crack front. Compared to standard specimen types, the biaxial loading conditions for the cruciform specimens are in general closer to the situation in pressurized vessels and pipes, especially under thermal shock loading conditions. In a combined experimental and numerical approach, detailed assessments of the local stress and strain fields in comparison to the crack front stress and strain states of standard specimens with deep and shallow cracks are provided. The cruciform bending specimen geometry is demonstrated to be suitable even in small scale dimensions. It permits the application of different combined external loading situations and thus a fracture assessment under conditions close to various situations in engineering application. Due to its small size, the specimen geometry can be employed even if only a limited amount of material is available.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , , ,