Article ID Journal Published Year Pages File Type
770757 Engineering Fracture Mechanics 2011 13 Pages PDF
Abstract

This paper presents the results of numerical simulations of fatigue crack growth performed using three-dimensional elastic–plastic finite element analysis. A simple node release scheme is used to simulate crack advancement. The crack front is assumed to be straight. Crack growth following a tensile overload is simulated. The total energy dissipated per cycle is calculated directly from the finite element analysis and used to predict fatigue crack growth. For comparison, fatigue crack growth rate experiments were performed on Type 304 stainless steel C(T) specimens to determine the effect of a single tensile overload. The dissipated energy per cycle is found to correlate well with the measured fatigue crack growth rate following an overload.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,