Article ID Journal Published Year Pages File Type
770774 Engineering Fracture Mechanics 2011 8 Pages PDF
Abstract

This is the second of a two part paper aimed at investigating the effects of microstructural morphology, material properties and loading on rate-dependent ductile fracture of heterogeneous materials. The locally enhanced Voronoi cell finite element method (LE-VCFEM) is used for micromechanical analyses of deformation and failure in complex microstructural volume elements. The first part of this paper sequence evaluates the sensitivity of strain to failure of computer simulated microstructures to loading rate, microstructural morphology and material properties. In this second part, LE-VCFEM simulations of actual microstructures of a cast aluminum alloy micrograph are used to validate a strain to failure model developed in the first part. A method for identification of critical regions within a heterogeneous microstructure is also developed and validated using in-situ observations of a two-point bending test. The influence of applied strain rates on ductile fracture of micrograph-based complex microstructures is also investigated.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,