Article ID Journal Published Year Pages File Type
771031 Engineering Fracture Mechanics 2010 16 Pages PDF
Abstract

This paper investigates the applicability of a cohesive zone model for simulating the performance of bituminous material subjected to quasi-static loading. The Dugdale traction law was implemented within a finite volume code in order to simulate the binder course mortar material response when subjected to indirect tensile loading. A uniaxial tensile test and a three-point bend test were employed to determine initial stress–strain curves at different test rates and the cohesive zone parameters (specifically, fracture energy and cohesive strength). Numerical results agree well with the experimental data up to the peak load and onset of fracture, demonstrating the value of the cohesive zone modelling technique in successfully predicting fracture initiation and maximum material strength.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , , , ,