Article ID Journal Published Year Pages File Type
771058 Engineering Fracture Mechanics 2009 17 Pages PDF
Abstract

Discrete mixed-mode fracture (modes I and II) of plain concrete is investigated using a coupled and an uncoupled cohesive zone constitutive model in a finite element context. Fracture surfaces are confined to inter-element boundaries that are not necessarily coincident with the actual fracture surfaces. For this reason, traction components on the cohesive zone do not correspond to actual values either. In this work is demonstrated that only the coupled model is able to cope with these spurious traction components, that must decrease with crack opening. It is shown also that, in this regard, the key variable is the plastic potential adopted in the integration of tractions. Three mixed-mode fracture examples were tested in this work: a three-point single-edge notched beam, double-edge notched plates under variable lateral and normal deformation and four-point double-edge notched beams. A good fitting with experiments was obtained only for the coupled model. Mode II parameters can change in a large range without noticeable change in results, at least in the tested examples.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,