Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
771497 | Engineering Fracture Mechanics | 2007 | 12 Pages |
Stress fields on elastic-creep bi-material interfaces with different geometry of the interface edge are analyzed by finite element method. The results reveal that the stress highly concentrates near the interface edge at the loading instant and it gradually decreases as the creep-dominated zone expands from the small-scale creep to the large-scale creep. The stress singularity due to creep which resembles the HRR stress singularity appears near the interface edge in all cases. The stress intensity near the interface edge time-dependently decreases and becomes constant when the transition reaches the steady state. The magnitude is scarcely influenced by the edge shape of elastic material, though it depends on the edge shape of creep material. The stress intensity during the transition can be approximately predicted by the J-integral at the loading instant.