Article ID Journal Published Year Pages File Type
771853 Engineering Fracture Mechanics 2008 17 Pages PDF
Abstract

Non-crimp fabric (NCF) cross-ply composites response to tensile loading is investigated showing large effect of the fabric layer stacking sequence: much larger elastic modulus reduction was observed in [0/90/0/90]S than in [90/0/90/0]S case. Since transverse cracks in 90°-bundles may give modulus decrease about 5%, the observed 40% stiffness reduction is attributed to failure and delamination of bundles oriented in the direction of the applied load. Analysis of micrographs shows extensive delaminations and 0°-bundle breaks. FE calculations showed that failure of 0°-bundles at the surface is energetically more favorable. However, the fracture resistance of surface bundles is higher due to smaller bundle waviness and the density of bundle cracks on the surface was not larger than inside.Two possible reasons for the higher stiffness reduction in the [0/90/0/90]S NCF composite were suggested: (a) If two imperfect 0°-bundle layers are separated by a 90°-bundle layer their resistance to failure is lower than when they are situated next to each other; (b) the effect of each surface 0°-bundle break on the composite stiffness is larger (due to less constraint from the surrounding material the opening of surface bundle breaks is much larger).

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,