Article ID Journal Published Year Pages File Type
772066 Engineering Fracture Mechanics 2008 12 Pages PDF
Abstract

Fatigue crack propagation of long and small cracks was investigated for hypoeutectic and eutectic Al–Si–Mg cast alloys. Crack propagation behavior in the near-threshold regime and Regions II and III was related to microstructural constituents namely primary α-Al dendrites and volume fraction and morphology of eutectic Si. Long crack thresholds reflect combined closure effects of global residual stress and microstructure/roughness. The small crack threshold behavior is explained through closure independent mechanisms, specifically through the barrier effects of characteristic microstructural features specific to each alloy. In Regions II and III changes in fracture surface roughness are associated with different crack propagation mechanisms at the microstructure scale. The extent of the plastic zone ahead of the crack tip was successfully used to explain the observed changes in crack propagation mechanisms.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,