Article ID Journal Published Year Pages File Type
773749 Engineering Failure Analysis 2014 19 Pages PDF
Abstract

•The XFEM is used to compute stress intensity factors for through-transverse cracks in slab tracks.•A three dimensional coupled dynamic model of a half-vehicle and the slab track is developed.•Sensitivity analysis of dynamic SIFs is performed based on the coupled dynamic model and XFEM.•Statistical characteristics of dynamic SIFs due to random wheel–rail forces are investigated.

The stress intensity factors (SIFs) for through-transverse crack in the China Railway Track System (CRTS II) slab track system under vehicle dynamic load are evaluated in this paper. A coupled dynamic model of a half-vehicle and the slab track is presented in which the half-vehicle is treated as a 18-degree-of-freedom multi-body system. The slab track is modeled as two continuous Bernoulli–Euler beams supported by a series of elastic rectangle plates on a viscoelastic foundation. The model is applied to calculate the vertical and lateral dynamic wheel–rail forces. A three-dimensional finite element model of the slab track system is then established in which the through-transverse crack at the bottom of concrete base is created by using extended finite element method (XFEM). The wheel–rail forces obtained by the vehicle-track dynamics calculation are utilized as the inputs to finite element model, and then the values of dynamic SIFs at the crack-tip are extracted from the XFEM solution by domain based interaction integral approach. The influences of subgrade modulus, crack length, crack angle, friction coefficient between cracked surfaces, and friction coefficient between faces of concrete base and subgrade on dynamic SIFs are investigated in detail. The analysis indicates that the subgrade modulus, crack length and crack angle have great effects on dynamic SIFs at the crack-tip, while both of the friction coefficients have negligible influences on variations of dynamic SIFs. Also the statistical characteristics of varying SIFs due to random wheel–rail forces are studied and results reveal that the distributions of dynamic SIFs follow an approximately Gaussian distribution with different mean values and standard deviations. The numerical results obtained are very useful in the maintenance of the slab track system.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, ,