Article ID Journal Published Year Pages File Type
773802 European Journal of Mechanics - A/Solids 2009 6 Pages PDF
Abstract
Fracture analysis is performed on a layered piezoelectric sensor possessing a Kelvin-type viscoelastic interface. An electrically permeable anti-plane crack is situated in the piezoelectric layer and perpendicular to the interface. The crack problem is solved by the methods of integral transform and Cauchy singular integral equation. The variations of the dynamic stress intensity factor (DSIF) vs. physical and geometrical parameters are investigated. At the beginning of creep and relaxation, larger viscosity coefficient always induces smaller DSIF. With time elapsing, the effect of viscosity coefficient becomes weaker and weaker. When time approaches infinity, the viscous effect disappears, and the DSIF converges to a value corresponding to the case of an elastic interface. The effect of the viscoelastic interface on the fracture behavior of the piezoelectric layer also depends on the substrate thickness. To some extent, thicker substrate may intensify the effect of the interface.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,