Article ID Journal Published Year Pages File Type
773947 Engineering Failure Analysis 2014 11 Pages PDF
Abstract

•A 316L stainless steel bellows failure was investigated.•The failure was by chloride stress corrosion cracking (SCC).•Micro-mechanism of crack propagation was by intergranular mode.•Influence of microstructure on the mode of crack propagation has been discussed.

There were three consecutive occurrences of bellows failure in a particular pressure safety valve (PSV) of a petroleum refinery within a time span of one week. The bellows were made of 316L grade austenitic stainless steel, and the PSV was mounted on one of the vessels of vacuum gas oil service in a hydrocracker unit. Metallurgical analysis of the failed bellows revealed that the failure had occurred by stress corrosion cracking (SCC). It was found that the SCC was promoted in the bellows due to the presence of high amount of chloride ions in the operating environment. Studies confirmed that SCC had initiated from the outer surface of the bellows and propagated inwards, resulting in leakage of hydrocarbon from the PSV. The source of chlorine in the environment was identified. It was discovered that SCC in the bellows was caused due to a previous failure in the heavy polynuclear aromatics (HPNA) absorption bed located upstream the process flow line. This failure was due to the presence of high concentrations of chlorine in the granulated activated carbon that was used in the HPNA absorption bed. During the repair of the HPNA bed, there was deposition of carbon soot on the body of the PSV. This carbon soot was the source of chloride ions for SCC to occur in the bellows. Generally, in chloride SCC, crack propagation in 316L SS takes place by transgranular mode. In the present case, however, the crack propagation was predominantly by intergranular mode. The metallurgical factors responsible for this change in micro-mechanism of crack propagation during SCC have been discussed.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , , ,