Article ID Journal Published Year Pages File Type
774101 European Journal of Mechanics - A/Solids 2014 9 Pages PDF
Abstract

In this paper, a comprehensive model of a micro-switch with both electrostatic and piezoelectric actuators, which accounts for the nonlinearities due to inertia, curvature, electrostatic forces and piezoelectric actuator, is presented to demonstrate the mechanical characteristics of such a micro-system. Dynamic equations of this model have been derived by the Lagrange method and solved by the Galerkin method using five modes. The micro-switch beam has been assumed as an elastic Euler-Bernoulli beam with clamped-free end conditions. The electrostatic actuation results are compared with other existing experimental and numerical results. Whereas the major drawback of electrostatically actuated micro-switches is the high driving voltage, using the piezoelectric actuator in these systems can provide less driving voltage and control the pull-in voltage. The study demonstrates that although the effect of nonlinearity due to electrostatic forces on the deflection is larger than other ones, yet a linear behavior can be observed through the balance between nonlinear terms. There are three ways to influence the design and control of the mechanical characteristics of this micro-switch: the softening effect due to electrostatic actuation, the hardening effect due to piezoelectric actuation, and varying the length and thickness of the piezoelectric actuator.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , ,