Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7744204 | Solid State Ionics | 2018 | 8 Pages |
Abstract
Hydration-dehydration cycles are critical to the mechanical performance of ceramic proton conductors. The development of in situ methods is desirable in order to study their structural response under conditions that mimic the operating ones. Neutron powder diffraction studies combined with simultaneous thermogravimetric analysis were performed on the hydrated forms of two members of the oxygen deficient perovskite BaTi1âxScxO3âδ series, with xâ¯=â¯0.5 and xâ¯=â¯0.7. Rietveld analyses agreed with in situ gravimetric data, allowing correlation of occupancy factors of the oxygen site to hydration levels and other structural data. Dehydration is an activated process that impacts on structural parameters and the level of Sc substitution was found to control the structural response during in situ dehydration, with higher Sc content leading to significantly greater volume contraction. This was rationalised by the chemical expansion due to hydration of oxygen vacancies within the xâ¯=â¯0.5 sample being anomalously small. Furthermore, the behaviour of the xâ¯=â¯0.5 system revealed an unexpected cell expansion during the early stages of dehydration, suggesting the hydration level may influence the thermal expansion coefficient (TEC).
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
Nico Torino, Paul F. Henry, Christopher S. Knee, Samantha K. Callear, Ronald I. Smith, Seikh M.H. Rahman, Sten G. Eriksson,