Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
774455 | European Journal of Mechanics - A/Solids | 2009 | 10 Pages |
An Eulerian rate-independent constitutive model for isotropic materials undergoing finite elastoplastic deformation is formulated. Entirely fulfilling the multiplicative decomposition of the deformation gradient, a constitutive equation and the coupled elastoplastic spin of the objective corotational rate therein are explicitly derived. For the purely elastic deformation, the model degenerates into a hypoelastic-type equation with the Green–Naghdi rate. For the small elastic- and rigid-plastic deformations, the model converges to the widely-used additive model where the Jaumann rate is used. Finally, as an illustration, using a combined exponential isotropic-nonlinear kinematic hardening pattern, the finite simple shear deformation is analyzed and a comparison is made with the experimental findings in the literature.