Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7744645 | Solid State Ionics | 2018 | 6 Pages |
Abstract
The organic-inorganic latex particles with sulfonic acid groups and core-shell structure are successfully obtained and then are heated to fabricate the self-crosslinked organic-inorganic nanocomposite membranes. Fourier transform infrared (FTIR) spectra confirm the chemical structure of membranes. The effects of inorganic component on the performances of nanocomposite membranes are investigated extensively. TGA analyses show that the membrane materials possess excellent thermal stability and 5% weight loss temperature increase with increasing SiO2 content. Solvent absorption measurement suggests the membranes are less permeable to methanol than water. The obtained membranes show conductivity values above 10â 2 S cmâ 1. More importantly, all the membrane materials exhibit more excellent methanol barrier and higher selectivity compared with Nafion® 117, demonstrating that those membranes could be a potential candidate as proton exchange membranes for future direct methanol fuel cells.
Related Topics
Physical Sciences and Engineering
Chemistry
Electrochemistry
Authors
Minghui Wang, Ge Liu, Xuejun Cui, Yuxiang Feng, Huan Zhang, Gaoxu Wang, Shuangling Zhong, Yunqing Luo,